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We study directed polymers in a (1+ 1)-dimensional disordered environment with discrete space and
time. For fixed L (polymer length) and r (disorder parameter) the quantity { Z") has two crossovers in n,
one related to the radius of convergence of the cumulant expansion for InZ and one related to the
discreteness of the lattice. The existence of the first crossover [at n,(L)—0 as L — «] weakens the cus-
tomary argument relating the behavior of the cumulants of InZ to the n dependence of
E,=—lim;_ ,In{Z") /L. The second crossover [at n,(r)— o as r—0] is explored here by computing
E, analytically and E; numerically to high accuracy for several values of 7 in two models.

PACS number(s): 02.50.—r, 02.90.+p, 05.40.+j

I. INTRODUCTION

The problem of directed polymers in random media
has been receiving much attention [1-4]. Besides its
direct connection to the randomized Ising lattice [1], it is
related by a mapping via the stochastic Burgers equation
[5] to many other physical phenomena: the growth of an
interface in the Eden model [6], ballistic aggregation [7],
domain walls in the two-dimensional random bond Ising
model [8], and a randomly stirred fluid [9] obeying
Burgers equation [10].

It seems that the “replica method” is one of the most
popular tools in dealing with the directed polymer prob-
lem. The “replicated partition function” can be convert-
ed into the multiple random walk with attraction
(MRWA) which may be defined as follows: n particles
execute simultaneous random walks on a lattice in
discrete time. One considers the ensemble of n-fold walks
of L steps, with each n-fold walk weighted by an
enhancement factor Y [x,,...,x,] exponentially related
to the degree of coincidence between particles. (We shall
write x; for the whole sequence x;(¢) of positions of the
ith particle at ¢t =1,2,...,L.) We may distinguish the fol-
lowing two versions:

Y=[[(+ )i (static attraction), (1.1)

iJj

where r is a given parameter >0 (r =0 yields the trivial
“free-particle” case) and s;; is the number of integers ¢
(0=t <L) for which x;(¢)=x;(2), i.e., the length of time
during which the particles coincide; and

T
Y=]I IIS(x,t) (combinatoric attraction), (1.2)

t=1 x

where S(x,t) depends on the number n,, of particles lo-
cated at x after ¢t —1 steps and on the partition of n,,
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effected by the rth step.

Kardar [1] considered a two-dimensional Ising lattice
with random bond strengths and a domain wall imposed
by external boundary conditions. In the solid-on-solid
approximation, which makes the interface into a directed
polymer, he showed that if the bond strengths are in-
dependently distributed by a single Gaussian then the
average “n-fold replicated” partition function (Z")
(where { ) denotes disorder average) is equivalent to the
partition function 3xp,.x, Y of an n-body static

MRWaA in one dimension.

Medina and Kardar [2] considered a directed polymer
system in which the bond strengths are all equal but each
bond contributes a random sign to any polymer travers-
ing it. They found that (Z?") was given by an n-body
combinatoric MRWA. The idea is that the polymers
must travel in paired strands to prevent vanishing of the
average over signs; when two of the n pairs come togeth-
er and then separate, there are three ways for the pairs to
reform. In general, if n,, pairs occupy site x at time ¢ — 1
and these pairs separate into sets of n,,n,.,, ..., at
time ¢, where 3 ;n,,;=n,,, then the enhancement factor
in (1.2) is

(2n, N n,,!

| § (CLOTIVAN | L
j j

The standard approach [1,2,11] to the MRWA has
been to replace it by a quantum statistical continuum
model in which n particles obey a Schrédinger equation
with Hamiltonian

S (x,1)= (1.3)

2 n
=AY 28(x;—x;),
ij

“ 1
H=3 =3

=1

0
Bx—j (1.4)

where A=In(1+r). The factor 2 in the second term
arises because in our lattice x varies by steps of two units
at a fixed ¢.

Since the ground-state energy of this A in one dimen-
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sion is —(n3—n)A%/6, it has been claimed that the
(1+1)-dimensional MRWA (both static and combinator-
ic) has a partition function

_ —F,W)

z,(L)= ¥ Y= Z, (L) (1.5)
Xpseons X,
where
F,,(L)Lz L(n—n3A%/6 . (1.6)

From the form of this expression, particularly the ab-
sence of n? and the presence of n3, various inferences
have been drawn about the critical exponents in the
directed polymer problem. In particular the coefficients
C,,(L) of the power series F,(L)=3, C,.n™/m! can be
identified [1] with the statistically observable cumulants
of the distribution of AlnZ=InZ —{InZ ) in the ran-
domized directed polymer problem. From (1.6) one
deduces that C,, the variance, grows more slowly than L
but that C; grows as L; this implies that InZ has a skew
distribution with width ~L" where ; <v <. Numerical
simulations [3,4] give v>~1.

The argument sketched above has two points of vulner-
ability. The first one has to do with the connection be-
tween C, (L) and lim; _, ,F,(L)/L; the second, with the
validity of the continuum approximation for the replica
problem on the lattice.

The first point is given prominence by a recent numeri-
cal simulation [4] of the directed polymer showing that
C, grows as L*/®. Naively this would seem to require a
term ~n*L*’ in F,(L), which not only contradicts (1.6)
but seems impossible since it is easily shown in the static
attraction model that

Z,(L)=

Sh"14p)mn=V72Z (L —1), (1.7)

where # is the branching number at each step (=2 in our
walk); and consequently that lim; ,  F,(L)/L is finite.
Moreover, it is tempting to extend the result of [4] to a
scaling  conjecture, that the distribution of
(InZ —(InZ ))/L'/* approaches a fixed form at large L;
the conjecture would imply C,,~L™’?. This seems to
violate (1.7) even more strongly.

A more careful examination of the possible forms of
functions of two variables shows, however, that the result
of [4] does not require that F,(L) grow faster than L for
fixed n. In fact, we can make the stronger statement:
even the specific form (1.6) is compatible not only with the
scaling of C4 as L*? but with the full scaling hypothesis
C,,~L™ forallm> 1.

We establish this fact by means of a “toy” form of
F,(L): suppose that

F,(L)=[nL —w(nL'*)]A%/6 , (1.8)

where w(x) is some analytic function which behaves as
x3 for large positive x. (For example, w (x)=x*/(x +b)
or w(x)=x3+e %) For any fixed n, as L — « we have
w(nL'?)~n3L reproducing the continuum result (1.6).
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But at fixed L the Taylor expansion w(x)=3 b, x"/m!
yields C,, = —A%b,,L™/3/6 in agreement with the scaling
hypothesis [12].

Thus, the behavior of the cumulants for large L is
reconciled with that of F, (L), but at the cost of postulat-
ing a crossover between the regime n —0 for fixed L and
the regime L — oo for fixed n. In view of this separation
of regimes, the original reasoning from (1.6) to the con-
clusion that lim; , ,C,/L =0 becomes quite weak. The
most we can say is that if the distribution of InZ about its
mean is assumed to have some shape independent of L
with a width 8(L), so that the distribution is a function of
[InZ —(InZ )]/8(L), then C,, ~8™ and F,(L) is a func-
tion of n8(L) alone, at least when n8(L) is small; and if
also F, (L) can be analytically continued between the two
regimes, then it must also depend only on n&(L) as
L — . Only then can we infer from (1.6) that 6(L) must
scale as L!/3, and, hence, C,~L m/3,

Even if the two supplementary assumptions [scaling of
(InZ —(InZ )) and analytic continuation] are made, one
cannot deduce the coefficient lim; , C;/L from (1.6),
because there is no need for the Taylor expansion of w (x)
in (1.8) to have b; =1 [see the second example after (1.8)].
In fact, a recent simulation [13] gives
lim; , ,C;/L = —0.145 for a certain choice of parame-
ters (Figs. 9 and 11, therein) whereas by assuming b; =1
one would have predicted lim;  C,/L=—6/4
=—1.71/4~ —0.43 (see Table II therein).

In the absence of these supplementary assumptions the
lack of connection between (1.6) and the behavior of C,,
is illustrated by various alternatives to (1.8). For exam-
ple, if we add to F,(L) a term u (nL'/? where u (x)~x*
as x >0 but u (x)~x as x — oo [e.g., u(x)=V 1+x>—1]
then (1.6) is unaffected because the new term grows only
as L'/? for fixed n; nevertheless C, now grows linearly
with L. Or again, let us add to (1.8) a term v (nL'/*)
where v(x)~x* for large x. This term will change (1.6)
by making it quartic in n. But it will have no effect on
the leading behavior of the cumulants for large L, since
L™’%is negligible in comparison with L™/3,

It is true that a term like n*L is ruled out by direct
analysis of the replica model and that numerical simula-
tions show that such terms as V'1+n2L —1 are not
present. But these same simulations have already told us
directly C,~L?"3. It therefore seems to us illogical to
represent the behavior of C, as a deduction from (1.6).
More appropriately, the observed behavior of the cumu-
lants can be combined with the result (1.6) to imply that
there is probably an analytic continuation between the
two regimes, since the combination nL !/? is important in
both.

The second point is brought out by observing that for a
fixed r, (1.6) cannot possibly hold for all n [14] because
(1.7) shows that [lim; _ ,F,(L)/L] is bounded above by
[n(n —DInV'1+r +0(n)]. Therefore, for fixed L and r,
there are two crossovers and three regimes. Let us call
these three the following.

(a) The cumulant regime: n <n,(L,r) where F,(L) is
given accurately by the series 3, C,,[n]™/™.

(b) The Bethe regime: n(L,r)<n <n,(L,r) in which




49 REPLICA MODEL AT LOW INTEGER N FOR DIRECTED...

(1.6) holds.

(c) The discrete regime: n > n,(L,r) in which the repli-
ca model yields probability functions that change drasti-
cally over one lattice step. Here, F,(L) can be approxi-
mated by assuming that (1.7) is saturated.

The nature of the two crossovers can be borne in mind
by recalling that n, —O for large L, whereas n,— « for
small 7. The second crossover has been discussed by Med-
ina and Kardar [14], who argue plausibly that it has no
effect on the continuation of the cumulant regime from
small to larger r. It seems worthwhile nevertheless to im-
prove our grasp of the entire situation by studying this
crossover through a calculation of E, =lim; _, ,F,(L)/L
for small integer n over a wide range of values of r. Set-
ting

E,=In(2"g,) (1.9)

we note that the generating function G, of the MRWA
has a singularity at ¢ =q,,. This singularity can be locat-
ed analytically for n =2 and numerically for n =3, and
so we can obtain E, as a function of r. In the next two
sections we describe this calculation, and in the last sec-
tion we discuss the second crossover in the light of it.

II. ANALYTICAL SOLUTION FOR n =2

Starting from some fixed initial condition, we write
#(x,x,,t) for the weighted sum of all two-fold walks
bringing the two particles to x; and x, after ¢ steps. The
function ¥ is analogous to an unnormalized two-body
J

t
'l’(xlaxZ’t):G(x],XZ’t)-{‘r E 2

=1 x'l,x; Jpiy=%1

We now introduce the generating functions

lkq(xl"XZ)E 2 qtlp(xl)XZ:t) ’
t=0

G (x1,%,)= 3 ¢'G(xy,%,,1) .

t=0
These will, of course, converge only for
zy=2xl,x2,...,xn¢(xl’x2""

sufficiently
,X,,t) behaves as 2"e ~Btgor large t, where A is the Hamiltonian in (1.4), then it is seen
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Schrodinger function. It obeys the recursion
Yxpx,0)0= 3 T Plx;—jnpxy—int—1)
Jy=E1j, =1
X[l+rA(x1,x2,j1,j2)] , (2.1)

where the function A distinguishes the two versions:
8y —jyx,—j, (static attraction)
Ox —jpx,—i) {17 8, ,x,) (combinatoric attraction ).

(2.2)

It is clear that #(x,x,,t) records all the enhancement
up to step ¢t —1. For definiteness we shall suppose that
two particles begin together at the origin

P(x1,%2,0)=8, 68,0 - (2.3)

It is useful to introduce the “free-particle’” Green’s
function which satisfies (2.1), with r =0, and (2.3),

G(xl,x2,t)= 2 2 G(xl_j],xZ_jz,t—l) ’
j1=ilj2=j:l
(2.4)
G(x,,x2,0)=8,‘1,08x2,0 .

[Of course, G factors as ((;+x,)/2)((+x,)/2), but we shall

not find this form useful.]
The solution to (2.1) and (2.2) may be expressed in
terms of G,

S Gxy—x},x,—x5,t =t )AX],X3,)1,ja W(x] —j,x5—jyt'—1) .

(2.5)

(2.6)

small gq. If, indeed, the partition function

from (2.6) that le,x2¢q(xl,x2) should encounter its first singularity at 2’g=e 2, where E, is the lowest eigenvalue of

A for n =2.
(2.5) now becomes

Yo(x1,22)=Gy(x,x0)+rg 3 3 (xi—j1x37p)G (% —x1,X —x3)AX1,%2,/1,)2) -

x\,xy Jpdy=%1

2.7

It is now helpful to introduce the ‘“relative coordinate” y =(x, —x,)/2 and the “total momentum 2k”. We define

k _ —ik(x,+x,)
d}q(y): 2 e b le—x2,2y¢q(xl’x2) ’
*1:%2
k — —ik(xl+x2)
Gig)= 3 e 8y —x,29GgX15%2)

X12%y

(2.8)
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We then have
Yy () =G (y)+rglf(»)yk(0) ,
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(2.9

(2.10)

where
. G,y +D+GH(y —1)+2cos(2k)GX(y) (static case)
Ta)= G,y +D+GXy —1) (combinatoric case).
Define

:IEZ e-—2i1y¢§(y) ,
y
Gl=3 e Gy, 2.11)
y
TH= e 720Jky) .
y

It is straightforward to calculate G;I by transforming
(2.4) according to (2.6), (2.8), and (2.11),

Kl 1

(N 1—2q cos2l —2q cos2k @12
Then we have
M=GH+rqrkyk0), (2.13)
where
2(cos2k +cos2! )G(;" (static case)
Jkl: kI . . (2.14)
q 2co0s(21)G," (combinatoric case).
From (2.9) we have
. GJ(0)
Y (0)=—————. (2.15)
1—rqJ (0)
From the definitions of G:I, J, ;‘1 we know that
1 ; 1
Klioy— 1 kL jilo g7 — 1 Kl
GH0)=—— [ Gyle™dl=—— [ GJdl
=1/[(1+4q sin’k)(1—4q cos’k)]'/?,
and by comparing (2.12) with (2.14) (2.16)

[qu(O)—l]/q (static case)
JH(0)=1[(1—2q cos2k)G;(0)—1]/q
(combinatoric case).

Using the above equations (2.13)-(2.16), we find that

2rg (cos2k +cos21)qu(0)

1+ A
1+r —rG,(0)

kl
G‘I

. |(static case) -

7 X 2rq cos21Gq"(O) @
G |1+ p

1+7r —r(1—2q cos2k)G,(0)

(combinatoric case).

Thus we have solved the two-particle problem analytical-
ly.

We are interested in the quantity Zx,x,¥e(X1%2),

which gives us the Laplace-transformed partition func-
tion and whose smallest pole with 22g <1 will tell us the
ground-state energy (In4q). It is obvious that the
Laplace-transformed partition function is just y& =%/ =0,

The pole we want is from the singularity of 1//;‘(0), ie.,
1+r=rGf=%0) for the static case and 1+r
=r(1—2¢)G}~%O0) for the combinatoric case. We there-
fore find referring to (2.16) with k =0 that the poles are
located at

“—“_l“m (static case)
1+ | (17442)
- - (2.18)
r 1—2q, . .
m (combinatoric case),
2

where g, represents the critical g value for two particles.
The energy E,(r) is obtained by solving (2.18) for ¢, and
using the result in (1.9).

III. NUMERICAL SOLUTION FOR n =3

For more than two particles, one cannot solve the
Laplace-transformed partition function analytically.
However, from the experience of solving the two-particle
case we can perform a numerical calculation to find out
the pole of the Laplace-transformed partition function in
the three-particle case.

Corresponding to (2.1) and (2.2) we have

WY(xy,x5,X5,8)= >

Jpriypdy =%l

WXy —J1,X, = jpXx3—j3t —1)

X[1+rA(x,x5,X3,71,J2,J3)]

(3.1
with
A= S 8 —i x—jSap
@B=D2na ¢ i
where assuming a7,
2 .
1+3(r +3r)8X'y-jy’xa_ja (static case)
fap= 1—-38, ,x, (combinatoric case). (3.2)

This choice of f,g for the static case gives the desired
enhancement (1+r)® when all three particles coincide.
For the combinatoric case (3.1) is correctly reproduced.
As before, P(x,,x,,x 3,t) records all enhancement effects
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up to step ¢ — 1. For the initial condition, we take Again, we define G as the specialization of ¥ when r =0,
and the generating functions ¥,, G, in the manner of
Ylxy,x3,x3,¢ =0)=8x1»05x2»08x3,0 . 3.3) (2.6). We obtain, corresponding to (2.7),
|

¥, (x)=3 q'd(x,0)
t=0

=G,(x)+rg 3G, (x—x) 3 A, (x—j)
x j=(£1,%£1,+1)

or
Yo (x1,X5,%3) =Gy (x1,x5,X3)+rg 3, ¢, (X,%,X—y)[1 +s%(r2+3r)8i0]
x,q9

X[Jq(xl—f,xz —'f,x3—f+)7)+Jq(x2—f,x3—f,xl —X +y)

+Jq(x3—f,x1—f,x2—f+}7)] ’ (3.4)
where
0 for combinatoric case
5= |1 for static case
and
_ , . .. s+1 ..
Jo(x1,%5,x3)= > Gq(xl—jl,xz—jz,x3—]3)~—2—[1+(s—1)]112] (3.5
Jprdgiy==%1
and
_ 1 3, ik x,—iky—ikyx,
Gy(xq,Xp,%3)= )} fd ke /(1—8¢q coskcosk,cosk;) .
We intend to introduce (redundant) relative coordinates
NW=(x,—x3)/2, y,=(x3—x,)/2, y3=(x1—x,)/2 (3.6)
with a constraint
Y11y, +y;=0; 3.7)

because of (3.7) the y’s define a plane, not a three space. But having defined

k — —ik(x)+x,+x3)
Yy1y2y3)= 3 e axz—x3,2y16x3—xl,2y28xl—x2,2)'3¢q(X) ’
XpXpX3
k — —ik(x)+xy+x3)
Gq (yl’yZ’y3 )= 2 e sz—x3,2y18x3—xl,2y28x]—x2,2y3Gq(X) ’
X1sX2:%3
k _ —ik(x;+x,+x3)
Jq (yl’yZ’yJ )_ 2 e 8x2—x3,2y18x3 —x1,2y28xl—x2,2y3"q(X) ’ (38)

X1¥pX;

we find that (3.4) transforms into an equation with three sources, arising from y, =0, y, =0, and y; =0. Thus the func-
tions ¢’q‘(0, »—y), 1/1’;( —,0,y), and ¢'§( ¥, —»,0) all influence one another. To be sure, these are all the same functions
by symmetry; but the cross connections involve a kernel, e.g., G;‘[O—( —y'),y—0,—y—y'l= G;‘(y',y, —y —y'), that is
not translation independent with respect to the y variable. Hence, we cannot complete the solution analytically.

Our plan is, having written the analog to (2.9) and specialized to the case y; =0, to solve it by iteration as a one-
dimensional nonlocal diffusion process with a kernel determined by G. Although the diffusion process takes place on
the line y; =0, the kernel is obtained as a sum over free propagators on a planar triangular lattice. Fortunately we are
in possession of a method [15] for obtaining these propagators quickly to high accuracy (see the Appendix).

By transforming (3.5) according to (3.8), we get

J:(J’h}’z,}’s):zs COS(3k)G.:C(}’1,}’2a}’3)+eik[qu(.V1 +1>}’2,}’3—1)+G:(.V1:J’2—1:)’3+1)+Squ(}’1 —Ly,+1,y3)]
+e MGy —L,yys + D+HGHy Ly, + 1,y — D +5GHy + 1,y,—1,y5)] (3.9)

and (3.4) now becomes
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Ve 1,92,93) =G 1,92,93)+rg T [1+53(r?+3n8, (107

y
X[qu()’l

taking y; =0, the above equation becomes

) =5y, —»,0)

=GXy,—»,0)+r 2¢’,;(y')L;(y,y')+srq(r2+3r)¢';(0)J;(y, -»,0),
y

where

Liy.y)=q[J5y —y",—y +y",00+If(—p,~y

[Note that only the first term in (3.12) is a function of
y —y' alone.]

From iterating (3.11) with k =0 we can find out the
corresponding  for a given g3 which is less than 1. And
we find that r increases as g, decreases which agrees with
our intuition. (The stronger the attraction, the lower the
ground-state energy.)

We will drop the subscript of g5 for convenience in the
following discussion. The way to find out r for a given g,
is the following:

Note that L" is composed of free propagators G and
G, k( Yiryys3) decays exponentially as it goes away from
the origin if ¢ <1. Therefore, we can control the accura-
cy of (3.11) by controlling the sum range y' in (3:11). (We
continue to write the superscript k but it should be un-
derstood that we have set kK =0.)

For s1mphclty, let’s consider the combinatoric case
first: We first give a trial solution zliqm( y), iterate it once
by the kernel L k( » y ') only, and call the normalized
iterated result ¢vq( 2y, e,

'/’q(z)(y)zrl > ¢q(1) y )qu(.v,y’)
<

where the normalization constant r, is chosen so that
Y,2(0)=1,(;)(0). We then repeat the process succes-
sively,

(3.13)

o) =r; 3 sy L py") .
-

=7,y 7,93)+If(y,
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’ _)—;10)

=7.y3t7p)H Ky =5y +7.p,)] 5 (3.10)
(3.11)
YY) HI—yy Y, =] (3.12)

M
We continue this iteration process until the solution is
“stabilized,” i.e., until $; . 1,(») = 9% ;\(y) for all y.

For the static case, the iteration equation (3.13) is re-
placed by

1/1§(i+1)()’)="i 2 'ﬁl.;(i)(yl)L:(.V,}")
V

+q(riyri—,+3r, )

X9k (0 Ky, —»,0) (3.14)

with the condition that we replace the subscript of r by 1
when the subscript is less than 1.

And now we set r =lim;_, . 7;; then the g we have been
using is critical for this 7, since if g is made any larger we
get

ry 1/1;‘(y’)L:(y,y’)+srq(r2+3r)¢}qc(0)J,f(y, —,0)
g

> [¢k(y), for all y

and the partition function in (3.11) diverges, but if g is
smaller it converges.

IV. RESULTS AND CONJECTURES

From Sec. I, we know that if the continuum approxi-
mation to MRWA, represented by (1.6), is correct, we
must have

TABLE 1. Results for n =2 and n =3, static case. For each value of 7 (column 2) the “ground-state
energy” E, (E;) is the logarithm of the quantity in column 3 (column 1). The ordering of the columns
reflect our method of calculation. Column 4 is the ratio of the two logarithms. Column 5 uses the
quantity E;(pred)= —24A2g(31)/6 where A=In(1+7) and g is defined by Eq. (4.4).

23qc quc
(n=3) r (n=2) E,/E, E(pred)/E,
0.050 3.189 566 0.420 404 3.457 126 3.359 652
0.150 1.809 702 0.585 148 3.540123 3.439058
0.300 1.136 768 0.716972 3.618 597 3.514734
0.450 0.789914 0.805 242 3.686 344 3.578731
0.650 0.488 682 0.892 241 3.778 209 3.665067
0.800 0.310828 0.943 725 3.856 426 3.742 545
0.950 0.128 051 0.987114 3.954 942 3.864 025
0.965 0.104 428 0.991 060 3.967112 3.884 835
0.980 0.076 613 0.994 936 3.979 455 3.911470
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E; _In[2%q;] 32—3
E; In[2%,] 2°-2

On the other hand, if we take E, ~—An(n —1)/2 as
suggested by (1.7) for the static model, we get

Es/E,=3X2/2X1=3 .

4. 4.1

(4.2)

Hence in the static model we expect E;/E,~4 when
n,>>3,and E;/E,~3 when n, <<2. In Table I we show
E,/E, for several values of r; the procedure was to
choose g;, compute r by the method of Sec. III, and
derive the corresponding g, from (2.18). We see that
E;/E,=~31} for r~21, and therefore we can say roughly
that n, lies between 2 and 3 when r is in this vicinity.
For the combinatoric model, at large », E; should be
dominated by the detachment of one pair strand from the
other two, for which (13) gives Z;(L)=[Z,(L)]% hence,
we expect E;/E,~2 when n, <<2, and again E;/E,~4
when n,>>3. We find (Table II) E;/E,~3 when r =2,
and so we infer that n, lies between 2 and 3 for this r.
(The value r =2 is just that which pertains to the applica-
tion of [2].)

Regarding F,(L) as a function of three variables n, L,
r, we have speculated about the existence of some simple
form analogous to (1.6) which might extend across both
crossovers. It is not possible to do this with a function of
one variable, but perhaps the three variables can be re-
duced to two determining the part of F, not linear in L.
We reason as follows for the static case:

For very large r [or A=In(1+r)] we know the particles
will stick together to get maximum enhancement and the
‘“growing rate” (or the “ground-state energy”) has lead-
ing term —An(n —1)/2 as can be seen from Eq. (1.7).
Inspired by this, we then propose a naive form for F, (L),

}\‘2
F,(L)=[nL —w(an)]?g[(n +1)A], (4.3)
where g is a function for which g (u)~3/u as u — o but
g(0)=1. Since we have the exact solution for two repli-
cas, taking L — o with n =2 we have

|
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TABLE II. Results for n =2 and 3, combinatoric case. The
four columns correspond to the first four columns of Table 1.

23qc 22qc

(n=3) r (n=2) E;/E,
0.050 74.184 680 0.279 652 2.351051
0.150 21.187 827 0.457778 2.427939
0.300 8.288 775 0.621980 2.535493
0.450 4.208 525 0.741 484 2.669 682
0.650 1.868 268 0.862 842 2.920099
0.800 0.945984 0.932 702 3.202 899
0.950 0.301 962 0.986 178 3.685278
0.965 0.238234 0.990 570 3.760371
0.980 0.168 209 0.994 772 3.847 120

L Indq,=[2L —23L]g(3A)A%/6 ,
where from the first line of Eq. (2.18)

4g,=(1+2r)/(1+r)*=(2e*—1)e "%, and therefore
gw)=[3u—91In(2—e *"*)]/u?. (4.4)

We then denote [n —n®]A%g[(n +1)A]/6 by E, (pred) so
that E,(pred)=E, exactly. We find then that E,(pred)
works pretty well in the intermediate-A regime (see Table
I). For small A it is not quite as good as the Bethe ansatz.

For the combinatoric case, at very large A, the particles
will branch out and then come back soon; hence, the
leading term of “the growing rate” will be less than
—An(n —1)/2. We have not found an analog of (4.3) for
this case.
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APPENDIX

The free propagator Gq"( Y1,Y2,3) satisfies the discrete
Helmholtz equation

Gi(y1:y2:¥3 )=8, 8y 08 ,0t¢ {2G{(y1,¥2,93)c083k +e*[GHy, +1,y,—1,y;)

+G:(yl_l’yZ’y3+1)+G:(ylry2+l’y3_l)]

+e THGHY — 1Ly, +1,y3)+GHy, + Ly, — D+GHy 1y, — Ly, + D} .

Since we are calculating for k =0, we may drop the su-
perscript and have

(1 —2q )Gq (yl,yz,y:; )=8y1 '08},2,08},3,0
+9 3 G,(y1,y2,73), (A2
NN
where the sum is over the “six nearest neighbors (NN)”
on the triangular lattice. (cf. Eq. (2.1) of [15].)

To calculate G* =% numerically, we adapt the method
of [15] where the corresponding function is found on a

(A1)

[
square lattice. This method is based on the following two
observations.

(1) G, satisfies not only (A2) but also a second exact
equation which is the discrete analog of the continuum
statement that VG, is radially directed. This “gradient
equation” (2.7) in [15], can be stated for either lattice as

SHUG,(r+pu)r, (A3)
"

where r is the position vector of a lattice point, and r+pu
ranges over the (4 or 6) neighbors of that point. (In two
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dimensions the statement that two vectors are parallel
boils down to a single equation relating their com-
ponents.)

(2) If the values of G, are known on a suitable strip ex-
tending from the origin to infinity, then they can be ex-
tended to a wedge spreading out to a certain angle 6 on
each side of the strip, by the use of (A3) alone [not (A2)];
and this extension (up to angle 6) does not magnify the
initial rounding error. For the square lattice the strip
must be 2 rows wide and along one of the major axes
(e.g., y,=0,1); the angle 6 is 45°. For the triangular lat-
tice we find that the strip must be 4 rows wide (e.g.,
y3—y,=0,1,2,3), and the angle 6 is 30°. In both lattices
6 turns out to be just enough so that the wedge accounts
by symmetry for the whole plane. Proposition (1) can be
derived analytically in the same way as in [15]; proposi-
tion (2) is empirical, but unmistakably true. The exten-
sion from strip to wedge is extremely rapid since the ap-
plication of (A3) requires only a few rational operations.
Thus, for the point (y,=—6, y,=1, y;=5) which lies
just outside the strip (y;—y,>3) but inside the wedge
(y,=0) (see Fig. 1), (A3) applied to r=(—6,2,4) yields
G,(—6,1,5) by the following equation:
G,(—6,1,5)=G,(—6,3,3)

+2[G,(—7,3,4)—G,(—5,1,4)]
—1[G,(—=7,2,5)—G,(—5,2,3)] . (A4)

The less trivial part of the computation is the evalua-
tion of G, on the strip 0=y, <y, <3. The idea is that by
combining (A2) with (A3) one obtains self-contained
linear equations involving only those values of G, for

y1=0 Y1

|

|

|

|

|

|

|

ll
~

* ]

FIG. 1. The triangular lattice has a threefold rotational sym-
metry. The wedge is in the y; <0 region between line y;=y,
and line y, =0 inclusive. The strip used to generate the whole
wedge is marked by short dashed lines. The point (—6,2,4) is
circled and the points around it are marked by X [cf. Eq. (A4),
and text therein).
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points in the strip. Taking starting values for G, near the
origin, one can iterate these equations along the strip ar-
bitrarily far. But these “strip equations” admit extra
solutions having nothing to do with G: lattice artifacts,
some of which grow rapidly. This embarrassment is
turned to positive use by a procedure which “fine tunes”
the starting values of G, so as to eliminate the growing
solution.

In both the square and triangular lattice, when symme-
try is taken into account, one needs three independent
values of G, : in the square lattice  G,(0,0),
Gq( 1,00=G(0,1), and G,(1,1 ); and in the triangular lat-
tice  G,(0,0,0), G,(—1,0,1)=G,(0,—1,1), and
G,(—1,—1,2). The self-contained strip equations admit
four solutions of which two can be recovered in the con-
tinuum and two are lattice artifacts; of the latter, one
grows rapidly and the other dies away. Only three com-
binations are consistent with symmetry near the origin.
Thus, by varying the starting values one gets arbitrary
combinations of the following three solutions.

(1) A lattice artifact growing by a factor of ~ 6 at each
iteration.

(2) A homogeneous solution analogous to Iy(Mr),
growing roughly as e™" where (on our strip), r =|y,| and
M is fixed in accordance with (2.2) of [15], so that for us
M?*=(1/q)—8.

(3) The inhomogeneous solution that we are looking
for, analogous to K ,(Mr) and decaying as e ~ .

Only the free case (¢ =4), which corresponds to the
“massless” case of M =0, has been discussed in detail in
[15]. In that limit the solutions (2) and (3) can be
resolved into a logarithmic part and a constant part. The
latter can be eliminated by rewriting both (A2) and (A3)
in terms of differences of G, from one point to another.
Thus, one only has two starting parameters. One starting
parameter is determined by the size of the source term in
(A2). The other is repeatedly fine tuned so as to eliminate
the rapidly growing solution.

When g is less than |, we have three starting parame-
ters and three solutions, of which two must be eliminated.
The algorithm required for this is of the same complexity
as for the “massless” case in three dimensions. A pro-
gram incorporating such an algorithm was written and
used for another computation [16], but the algorithm has
not been described in detail. Since its design involved
some difficulty, we shall describe it in what follows.

For each integer n >0, we define a column vector y(n)
as

G,(—2n,n,n)
G,(—2n,n—1,n+1)
G,(—2n—1,n,n +1)

G,(—2n—1,n —1,n+2)

x(n)= (A5)

Then by applying (A3) at (—2rn —1,n,n +1) and at
(—2n —2,n,+2), and (A2) at these points and at
(—2n —2,n+1,n +1), we obtain five equations from
which Gq( —2n —2,n —1,n +3) can be eliminated, leav-
ing four equations which can be written as

x(n+1)=M(n)x(n), (A6)
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where M is a 4 X4 matrix whose elements are rational in
n. (A 4X4 matrix is also obtained on the square lattice.)

The three independent solutions of (A6) possessing the
required symmetry of the origin may be called x 4,X35,Xc
and can be obtained by iterating (A6) from

0 6q 1
0 —2q 0
XA(O)= ol XB(O)Z 1_2q N and Xc(0)= 0
1 0 0
(A7)

Applying (A2) at the origin, and assuming symmetry, we
see that the desired y must be of the form

)((n)=leg[xc(n)—a)(,,(n)—ﬁ)(s(n)] , (A8)
where a and B are to be chosen to obtain good behavior
atn— 0.

We anticipate that, in general, the two growing eigen-
values will be unequal, and after many iterations both y ,
and yp will be dominated by the larger one. But then the
determination of a and B, from simultaneous linear equa-
tions requiring two components of Y to remain small, will
be a small difference of large terms. To prevent this, we
shall make a “preliminary replacement” of p by

xpn)=xg(n)—vyx 4(n), (A9)

where y will be chosen to eliminate the larger eigenvalue
from y .. We shall then have

1

X(n)=l——[xc(n)—a’)(A(n)—BXB'(n)] ,

e (A10)

where a’=a—pPy; and the determination of a’ and B
from simultaneous equations will not be imprecise, be-
cause Y 4 and ) g will not be quasiparallel vectors.

We proceed by first developing x ,. Since the floating-
point exponent is limited by hardware, we must periodi-
cally rescale. We have obtained better results with short-
er periods, for example rescaling when the components of
X 4 have reached ~10'%, although our machine allows
~10%. Thus, in region 0 (0<n <n,) we are recording
X 4; in region 1 (n,<n<n,) we are actually storing
€'y, where €{!~107"; in region 2, e;y, where
€5~107%; and so on. The quantities stored range in
magnitude from ~ 1 to ~10%.

We then develop xjp in the same manner, stopping at
the end of each region to replace it by xz.. This is done
as follows. At the end of region O (the regions have been
defined once and for all during the calculation of y ,) we
compute a number v, as x%(n,)/x'}(n,) where the su-

perscript (i) designates a particular component. Then we
define

XBl(n)E)(B(n)"')(OXA(n) (A11)

for all n. Since ), asymptotically does not have the
designated component much smaller than the others—in
principle one should verify this— X3, is not quasiparallel

tOXA(nl).
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To obtain X3, accurately, we apply (A11) not at n =n,

but at n =0, and then reiterate (A6) through region 0 to
obtain yp , discarding Y. At n, we find that the desig-

nated component of xp is actually of order 1072 [10"
times the smallest precision (~107"7) of the machine],
and the other components are much greater than 1, of an
order determined by the ‘“second” growing eigenvalue.
We rescale XB, by €2 to bring these components to O(1),

and continue iterating ffXB, through region 1. At n, we
find that the components of €’y B, have reached 10'* and
we define

€1Xp, = €1Xp, —V1€{X 4
with

Yi=€ixs (ny)/efxQny) . (A12)

We do not compute by iterating (A6) from n =0,
p B,

because the machine rounding error would be magnified
according to the first eigenvalue. Instead, we apply (A12)
directly to all n <n, and iterate (A6) forward from n,.
Again, we rescale at n, and stop at n; to compute
7’2=612?X(Bi;("3)/€£4)((,?("3)-

In general, after iterating (A6) for the first time
through region j, one stops at n;,,, finds that
efx,,j(nj+1)~1015, and performs the following pro-
cedures. ) )

(1) Compute yj=ef)((§]’,(nj+l)/ef)(‘j’(njﬂ).

(2) Define Xs, ., by

efxajﬂ(n)=efXBj(n)—yjejf‘XA(n) . (A13)
. and work back-

(3) Compute ef_lejH(n) for n=n;

wards through region j —1 using (A13); discard the old
value ef_ 1XB,: Then work backwards through region

Jj —2, and continue to the origin if necessary. However,
the program may be told to stop when it reaches a region
j' for which (e}/€l)y;(e'/ef)x 4(njo1y) is less than
machine precision, since for n <n; we may take XB,- as
the final y 5.

(4) Iterate (A6) forward from n; to develop ef)(BjH in
region j, discarding the old value stBj. At n; ., define
an appropriate €7 ;.

(5) Rescale and continue iterating (A6) to develop
efﬂxﬂjﬂ in region j +1. At n;, stop and repeat from
step (1) with j—j +1. »

In this way each region is covered twice using (A6) and
as many times as needed using (A13). The numbers y;

are of O [1]. The number ¥ in (A9) is theoretically given
by

€, o
Y=YtV g +tY2 g+
€ €

(A14)

but we do not compute it explicitly since the direct appli-
cation of (A9) for large n would involve unacceptable er-
ror18. The algorithm given above computes
Xp=lim;_, «XB, to machine accuracy for arbitrarily large
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n, as though y had been determined to whatever pre-
cision this would have required if (A9) were used.

Having computed and stored )z by the above method,
we turn to ), which will be developed by a similar series
of approximations starting with Y. The organization is
similar but no rescaling will be needed since
x does not increase indefinitely. The progression
Xp—Xg,— " Xp is replaced by a more complicated

progression, X¢c—X ¢ —>Xcl—+xcl—> X, as follows.

Step (1), after iterating (A6) through region j to obtain
ch(n,,+1), is to compute A; =x((§;(nj+,)/€j’)((§)(nj“).
Step (2) is to define

Xc(n)———)(cj(n)—Ajej’xA(n) . (A15)

Steps (3) and (4) are the same as before to compute
with (A15) y through region j. But one does not con-
J

tinue to step (5), because y is still growing in region j
J

according to the second eigenvalue. Instead, one returns
to the following: (1’) Compute,

_ HcVB " HBYc _

_ » Pj
H4Ve~HpV4y

where (with €7 =1 and i5i")

HaVec ™ HcVa

aj
H4VE —HBY 4
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:“'A,B,C:Gf’B’CX(j),B',cj("jH) ,

— 4,B,C (i)
VA,B,C—ej XA,B',Cj(nj"']) .
(2") Define

XCj1(n)=xg (n)—a€e'x 4(n)—B€elxp(n) . (A16)
J
This makes both X%;ﬂ(njﬂ) and X(C";Ll(njﬂ) small com-
pared to other components; since presumably no linear
combination of the two growing solutions has this prop-
erty, they are both filtered out. One then carries out
steps (3) [with (A16)], (4) and (5) to obtain Xc,,, through
J

region j + 1, and repeats from (1) with j —j + 1.
Thus, in obtaining y one covers each region three times
with (A6). The extra iteration is needed because if Y.
J

were used directly in (1') and (2') instead of x , the pre-
J

cision in 8 ! would be insufficient to filter out the second
growing solution.

Despite its complexity, this algorithm is extremely rap-
id in execution and amazingly accurate. The strip-and-
wedge computation to obtain G, for all sites within 100
steps of the origin consumes less than a second (VAX
computer CPU), and the resulting numbers satisfy (A2)
throughout the plane to ~107!¢ absolute accuracy
(machine precision ~10~17).
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